
MADLAB PICWORKS2 
 

PICworks2 has the following features: 

• drives 4 x LEDs (back-to-back in pairs) 
• drives 2 x dc motors (bi-directional) 
• or, drives 2 x servo motors 
• or, drives 1 x stepper motor (bipolar or unipolar) 
• analogue light sensor 
• analogue preset control 
• moving-coil speaker and 2-channel tune player 
• keyswitch 
• real-time control using PS/2 keyboard 
• recording and playback of up to 120 events 
• motor/servo/stepper parameters and speeds adjustable 
• supply voltage 6V - 12V dc 
 
 
Construction
 
First solder the two short pieces of wire to the pairs of holes marked LINK. Then fit and solder the resistors 
(R1 to R9) and trim their legs. Identify the resistors by the coloured stripes on the body. Next fit and solder 
the capacitors, paying attention to the polarity of the electrolytic capacitors C3, C6 and C7 (negative is 
marked by a stripe on the side of the body, and also the shorter leg). The polyester (C1) and ceramic (C2, C4 
and C5) capacitors can be fitted either way around. 
 
Then fit the transistors and the regulator. The symbols on the board indicate the orientation of the transistors 
(flat side of the component against the flat side of the symbol). The regulator is mounted upright with its 
metal side facing inside the board (towards the chips). 
 
Solder the light sensor (LDR) to the board either way around. Be careful when soldering as excessive heat 
may melt the plastic. 
 
Solder the keyboard socket (PS/2) and speaker (SPEAKER). Take care when soldering the PS/2 socket as the 
pins are very close together. The speaker has a marked polarity (+ and – signs on the underside) but in 
practice the polarity does not matter (in other words it can be soldered either way around). 
 
Next fit the chip sockets IC1 and IC2 (matching the notch in the socket against the notch in the symbol on 
the board). Again care should be taken when soldering these components to avoid solder bridges between the 
pins. It is not recommended that the chips are soldered directly to the board. 
 
Fit the crystal (XTAL), keyswitch (S1), and terminal blocks (CON1 to CON4). The wire-entry holes in the 
terminal blocks should all face outwards (towards the edge of the board). 
 
Solder the preset (VR1) to the board and firmly push the spindle into the small the hole in the top. 
 
Solder the battery snap (BATTERY) to the board. Support holes are drilled on the board for the battery snap 
leads. Feed the leads up through the support holes from the track side of the board and then down the solder 
holes. Red is positive and black is negative. 
 
Don't fit the chips until you have thoroughly checked your construction. Check that all the components have 
been inserted correctly and that there are no dry joints and no solder bridges between pins. Then carefully 
bend the legs of the chips inwards a little with your fingers. Fit the chips into their sockets matching the 
small notch in the chip to the notch in the socket. 
 

1 



Rubber feet for the four corner holes are supplied. Alternatively these holes can be used to mount the pcb 
within a small case. 
 
Insert 6 AA cells into the battery box, observing the correct polarity. The cells used should ideally be 
rechargeable NiMH or NiCd types, but if disposable cells are used they should be good quality alkaline ones. 
It is recommended that rechargeable NiMH cells are used. 
 
The firmware includes a power-on self-test. Connect the battery box to the battery snap and a double beep 
should sound. 
 
Disconnect the battery box, connect a PS/2 PC keyboard to the socket then re-connect the batteries. 
Keyboard options are provided to test the LDR light sensor and preset. Function key F11 echoes the light 
sensor to the keyboard LEDs. Waving your hand in front of the sensor should cause the LEDs to flicker. 
Function key F12 echoes the preset control to the keyboard LEDs. Rotating the spindle should cause the 
LEDs to come on and off. 
 
The board can be powered by 4 AA cells rather than 6 cells, but if so they must be primary (i.e. non-
rechargeable) types (1.5V) rather than secondary (rechargeable) ones (1.2V). 
 
 
Connecting LEDs 
 
Up to four LEDS can be connected as back-to-back pairs. The LEDs are multiplexed which means that only 
one of each pair of LEDs is illuminated at any one time, but the multiplexing frequency is sufficiently high 
for any flicker not to be apparent. 
 
Connect the anode of the first LED (LED1) to LO1 and its cathode to LO2. Connect the second LED (LED2) 
anode to LO2 and cathode to LO1, the third (LED3) anode to LO3 and cathode to LO4, and the fourth 
(LED4) anode to LO4 and cathode to LO3. The cathode of an LED is its shorter leg and is generally also 
indicated by a flat on the rim of its body. 
 
Press the digit keys 1, 2, 3 and 4 and check that all four LEDs are lit. 
 
100 ohm resistors (R7 and R8) on the circuit board in series with the outputs LO1 and LO3 limit the 
(multiplexed) LED current to about 15mA (less for white or blue LEDs). 
 
Resistors are not in series with the LO2 and LO4 outputs. These outputs can be driven as single-ended 
outputs but if doing so external resistors should be used to limit the current. Note that outputs LO2 and LO4 
are still driven by a 50% duty cycle whatever is connected to them. 
 
If LO1 or LO2 are used then the preset (VR1) should be turned fully clockwise. 
 
LO3 and LO4 could be reconfigured as inputs (with weak pull-ups) but this is not supported by the supplied 
firmware. However the PIC source code is freely available online for user modifications (see below). 
 
 
Connecting dc motors 
 
PICworks2 can drive two dc motors bi-directionally (forward and reverse). Connect the first motor 
(MOTOR1) to HI1 & HI2, and the second (MOTOR2) to HI3 & HI4. 100n ceramic capacitors should be 
soldered across the tags of the motors to reduce noise. 
 
Press F1 then ENTER and check that MOTOR1 turns in both directions when the left and right arrow keys 
are pressed. Then press shift F1 and ENTER and check that MOTOR2 turns in both directions when the up 
and down arrow keys are pressed. 
 

2 



Note that dc motors are driven at the supply voltage rather than regulated 5V. The H-bridge is capable of 
delivering a maximum of 600mA output current per motor. 
 
The speeds of the two motors can be set independently using a PS/2 keyboard (see below). Speed control 
works by reducing the voltage applied to the motor, so motors rated at less than the supply voltage can be 
safely used. Be careful not to exceed the rated voltage for the motors used, otherwise excessive current 
consumption may crash the PIC microcontroller. 
 
The hardware is capable of driving four uni-directional motors connected to HI1 & GND, HI2 & GND etc. 
but the supplied firmware doesn’t support this. However the PIC source code is freely available online for 
user modifications (see below). 
 
Note that PICworks2 should be disconnected from the power when not being used as the H-bridge chip 
draws quite a large quiescent current of about 50mA even when not driving the motors, and the regulator is 
also a consumer of current. 
 
 
Connecting servo motors 
 
PICworks2 can control two servo motors. Connect the first servo (SERVO1) as follows: power (positive, 
usually red) to HI2, ground (negative, usually black) to GND, control (blue or white etc.) to HI1. Connect 
the second servo (SERVO2): power to HI4, ground to GND, control to HI3. 
 
Press F2 then ENTER and check that SERVO1 turns in both directions when the left and right arrow keys 
are pressed. Then press shift F2 and ENTER and check that SERVO2 turns in both directions when the up 
and down arrow keys are pressed. 
 
Note that servos are driven at the supply voltage rather than regulated 5V (this applies to the control input as 
well as the power inputs). The H-bridge is capable of delivering a maximum of 600mA output current per 
servo. 
 
Servo motors are controlled by means of a pulse-width modulated signal with a fixed duty cycle period. The 
length of the pulse determines the position of the servo. For a standard servo, pulses of 1.5ms centre it, 
pulses of 1.0ms move it the maximum 90° anti-clockwise, and pulses of 2.0ms move it the maximum 90° 
clockwise. Particular servos may have different maximum & minimum angles and control pulse ranges. 
These parameters as well as the tracking speeds can be set independently for the two servos (see below). 
 
Instead of two servos, one servo and one dc motor can be connected instead. 
 
An additional two servos could be driven from HI2 and HI4 if the servos were powered externally, but this is 
not supported by the supplied firmware. However the PIC source code is freely available online for user 
modifications (see below). 
 
 
Connecting stepper motor 
 
A single bipolar stepper motor (STEPPER) can be used. Connect the first stepper coil to HI1 & HI2, and the 
second coil to HI4 & HI3. 
 
Press F5 then ENTER and check that STEPPER turns in both directions when the left and right arrow keys 
are pressed. 
 
Note that the stepper is driven at the supply voltage rather than regulated 5V. The H-bridge is capable of 
delivering a maximum of 600mA output current per stepper coil. 
 
The stepper tracking speed can be set using a keyboard (see below), and additionally one of three driving 
sequences can be selected: 

3 



 

Standard sequence: 1A -> 2A -> 1B -> 2B 
High-torque sequence: 1A+2A -> 2A+1B -> 1B+2B -> 2B+1A 
Half-step sequence: 1A+2A -> 2A -> 2A+1B -> 1B -> 1B+2B -> 2B -> 2B+1A -> 1A 
where 1 is the first coil and 2 the second, and A and B are the two connections to each coil (i.e. 1A 
connected to HI1, 1B to HI2, 2A to HI4, and 2B to HI3). 
 
Note that the high-torque sequence consumes twice the current because both coils are energised at the same 
time, and the tracking speed of the half-step sequence is half that of the other two sequences. 
 
A unipolar stepper can also be driven by grounding or not connecting the centre taps. 
 
 
Analogue sensors 
 
Two analogue sensors are provided on board, a light-sensitive LDR and a rotary preset control. 
 
The light sensor can be used to trigger a recorded sequence of events when light falls on the sensor, when 
light stops falling on the sensor, or when the light level momentarily changes. The latter mode can be used as 
a simple form of motion sensor. 
 
The threshold between light and dark can be set using the keyboard function key F7 (see below). 
 
The preset can be used as a speed control for the motors (see below). 
 
The preset could be replaced with an external thermistor of similar resistance (using two of the three VR1 
holes that aren't connected to each other by a track on the circuit board), or any other kind of simple resistive 
sensor. In this case the threshold for the sensor can be set using the keyboard function key F9 (see below). 
 
Note that LO1 and LO2 can't be connected to anything if the LDR or preset are used. 
 
 
Source code 
 
The documented source code for the PICworks2 firmware is downloadable from the MadLab website and is 
‘open source’. In other words you are encouraged to study its operation and modify it to suit your particular 
requirements. To do this you will need access to a PIC programmer. A suitable programmer is PICSTART 
Plus from Microchip but there are many other capable programmers on the market (it must be able to 
program 16F648A’s though). 
 
See http://www.madlab.org/kits/picworks2.html for further information. 
 
A Microsoft Windows application is provided on the MadLab website to convert a standard MIDI music file 
into a form suitable for PICworks2. To make use of this you will need a PIC programmer and software to re-
assemble the source code. The MPLAB development system includes a suitable PIC assembler and is freely 
downloadable from the Microchip website (http://www.microchip.com). 
 

4 

http://www.madlab.org/kits/picworks2.html
http://www.microchip.com/


Keyboard settings 
 
F1 - set MOTOR1 maximum speed (1 to 64, higher = faster) 
shift F1 - set MOTOR2 maximum speed (1 to 64, higher = faster) 
F2 - set SERVO1 minimum pulse length (50 to 250, in increments of 10us) 
shift F2 - set SERVO2 minimum pulse length (50 to 250, in increments of 10us) 
F3 - set SERVO1 maximum pulse length (50 to 250, in increments of 10us) 
shift F3 - set SERVO2 maximum pulse length (50 to 250, in increments of 10us) 
F4 - set SERVO1 tracking speed (1 to 127, higher = faster) 
shift F4 - set SERVO2 tracking speed (1 to 127, higher = faster) 
F5 - set STEPPER maximum speed (1 to 127, higher = faster) (NB not linear) 
F6,1 - standard stepper sequence 
F6,2 - high-torque stepper sequence (higher power) 
F6,3 - half-step stepper sequence (lower speed) 
F7 - set light threshold (1 to 255) then echo to keyboard LEDs (all on or all off) (ESC to exit) 
F8,1 - PRESET analogue sensor 
F8,2 - motor/servo/stepper speed controlled by PRESET 
F9 - set PRESET threshold (1 to 255) then echo to keyboard LEDs (all on or all off) (ESC to exit) 
F11 - echo LDR sensor to keyboard LEDs (3 most significant bits) (ESC to exit) 
F12 - echo PRESET to keyboard LEDs (3 most significant bits) (ESC to exit) 
 
Settings are entered using the digit keys on the keyboard followed by the ENTER key. ENTER pressed by 
itself selects without altering a setting. So, for example, to enable SERVO1 without changing its pulse 
length, just press F2 followed by ENTER. A double beep sounds when ENTER is pressed. 
 
Note that you must select a dc motor, servo or stepper before it will work by pressing the corresponding 
function key and entering a setting or just pressing ENTER. These different devices share the same terminal 
blocks but are controlled in different ways and PICworks2 needs to be told what it is connected to. 
 
MOTOR1 and MOTOR2 speeds are specified in terms of fractions (64th’s) of the supply voltage. So, for 
example, an entered value of 32 is equivalent to supplying the motor with a voltage of 32/64, or half, the 
supply voltage. The motors are driven by a PWM signal of sufficiently high frequency that the pulsed 
voltage effectively appears as a constant voltage to the motor. Be careful not to exceed the rated voltages for 
the motors in use. 
 
Servo pulse lengths are specified in terms of 10us. So an entered value of 250 equals 2500us or 2.5ms. The 
default range is 1.0ms minimum to 2.0ms maximum, but many servos have a range of 0.5ms to 2.5ms. 
Reducing the pulse length range usefully allows the movement of the servo to be constrained. 
 
The fastest servo tracking speed corresponds to 1/10 second for full travel (hard left to hard right) at nominal 
pulse limits (1ms => 2ms). Note that actual servos may not be able to track as fast as this. 
 
The stepper tracking speed is in terms of milliseconds per step cycle. The fastest tracking speed is a 
minimum delay of 1ms between steps. Note that there is a physical limit to the maximum speed for every 
stepper motor. If the maximum for a particular stepper is exceeded then it will cease to rotate properly. 
 
The stepper sequence is selected by pressing function key F6 followed by the digit key 1, 2 or 3 (followed 
by ENTER). The default sequence is the standard sequence which should be suitable for most situations. 
 
The F8,2 (ENTER) option allows the motor/servo/stepper speed to be continuously varied by rotating the 
preset control. F8,1 (ENTER) disables this. 
 
All settings are stored in non-volatile memory and retained after power is removed from the board. 
 

5 



Real-time control 
 
1 - toggle LED1 
2 - toggle LED2 
3 - toggle LED3 
4 - toggle LED4 
RIGHT ARROW - toggle MOTOR1/SERVO1/STEPPER forward 
LEFT ARROW - toggle MOTOR1/SERVO1/STEPPER reverse 
UP ARROW - toggle MOTOR2/SERVO2/STEPPER forward 
DOWN ARROW - toggle MOTOR2/SERVO2/STEPPER reverse 
B - sound a beep 
T - play tune (stops all motors) 
ESC - restart 
 
The arrow keys (cursor keys) on the keyboard are used to control the motors. Each time an arrow key is 
pressed the associated motor is toggled. That is to say if the motor was stationary it is started, and if it was 
running then it is stopped. It is not necessary to hold down an arrow key to keep a motor running. 
 
A similar technique is used to toggle the LEDs on and off using the digit keys 1 to 4. 
 
Tune playing is mutually exclusive with motor control. In other words while a tune is playing all motors and 
outputs are disabled. Also the PS/2 keyboard is not polled while a tune is playing (this is necessary in order 
to maintain pitch accuracy while playing two notes simultaneously). 
 
The default tune can be changed if you have access to a PIC programmer. An application downloadable from 
the MadLab website converts a standard MIDI file to the format expected by the PICworks2 firmware (see 
above). 
 

6 



Recording events 
 
shift R - record a sequence of events 
 

S - stop recording 
L - loop to start of sequence (and stop recording) 
K,0 - wait for keyswitch off 
K,1 - wait for keyswitch on 
A,0 - wait for light off 
A,1 - wait for light on 
A,2 - wait for light change 
V,0 - wait for preset off 
V,1 - wait for preset on 
V,2 - wait for preset change 
ESC - abort 
 

P or ENTER - play recorded sequence of events 
 
The record feature allows the real-time motor and LED control keys above to be recorded and played back as 
a complete sequence. Press shift R to begin recording a sequence. 
 
Sequences can be looped by pressing L at the end of the sequence, or ended by pressing S instead. 
 
The keyswitch commands (K followed by 0 or 1) allow simple user interaction. A sequence can be halted 
until the on-board keyswitch is pressed for example. The keyswitch could be replaced by an external switch 
(a reed relay triggered by the opening of a door for example) to allow more control. 
 
The light threshold is set using F7 (see above). The higher the value the less light is needed to trigger. The 
light change option (A followed by 2) is useful as a simple proximity sensor. When an object passes over or 
near the light sensor then a sequence can be triggered. 
 
Up to 120 events can be stored in the non-volatile memory of the PIC. An event in this context is a change of 
state, for example starting a motor or stopping it. The time between events can be from 0 to 16383 seconds, 
and times are recorded with a resolution of 1/16s. 
 
Note that motor parameter and other setting changes are not stored in sequences. In other words if you 
change say the servo speed in the middle of recording a sequence, then the new speed will apply to the entire 
playback of the sequence. 
 
If a PS/2 keyboard is not detected on power-up then PICworks2 automatically plays any recorded sequence. 
Otherwise a recorded sequence is played back by pressing P or the ENTER key. 
 

7 



Component List 
 
Resistors 

R1, R2, R7, R8 100R (brown, black, brown, gold) 
R3 10R (brown, black, black, gold) 
R4, R5 1k (brown, black, red, gold) 
R6 47k (yellow, purple, orange, gold) 
R9 1R (brown, black, gold, gold) 
 

VR1 47k preset + spindle 
 
Capacitors 

C1 22n polyester (yellow, square) 
C2 100n ceramic (brown, marked ‘104’) 
C3 10u electrolytic 
C4, C5 22p ceramic (small, marked ‘22’) 
C6, C7 100u electrolytic 
 
Semiconductors 

TR1, TR2 BC547B transistors 
REG L7805CV regulator (5V, 1A) 
IC1 16-pin socket + L293D H-bridge driver 
IC2 18-pin socket + PIC16F648A-I/P microcontroller (FF1X) 
 
Miscellaneous 

LINK 2 x wire links 
XTAL 20MHz low-profile crystal 
LDR light dependent resistor 
SPEAKER enclosed pcb speaker 
S1 keyswitch 
PS/2 PS/2 socket 
CON1, CON2 3-way terminal blocks 
CON3, CON4 2-way terminal blocks 
BATTERY PP3 moulded battery snap 
 
Battery box 6 x AA 
 
PCB 
4 x rubber feet 
 
 
Design and documentation © MadLab® 2006 

8 


