
MadLab PICLAB
version 2.1

Written by James Hutchby
Copyright © MadLab Ltd. 2000-2004
All Rights Reserved

info@madlab.org
www.madlab.org

MadLab® is a registered service mark of MadLab Ltd. in the UK.
PBASIC and BASIC Stamp are registered trademarks of Parallax Inc.
PIC is a registered trademark of Microchip Technology Inc.

Contents

Introduction ...3

PICLAB Programmer ...3
System Requirements...4
Packing List...5
Installing PICLAB ..6
Hardware Setup ..7

PICLAB Programmer ...7
PICBOT ...7

Quick Start ..8
Commands..9

File Menu...9
Edit Menu...10
Options Menu ..11
Program Menu...13
Window Menu..15
Help Menu ...16

Toolbar..17
BASIC Programs...18

Differences to BASIC Stamp PBASIC ...18
BASIC Instructions..19
Operators and Precedence...54
System Variables ..55

PICLAB Programmer - Tester Board ...55
PICLAB Programmer - BASIC Stamp..56
PICLAB Programmer - Generic PIC ..56
PICBOT ...57

Peripherals..58
Software Updates ...62

2

Introduction

The PICLAB software supports two different pieces of hardware, PICLAB Programmer and PICBOT.

PICLAB Programmer

PICLAB Programmer functions both as a normal PIC device programmer, and as a tester board for
running simple PIC programs.

As a device programmer (where a programmed PIC is destined for some other board), it can program
PICs with industry-standard hex files produced by assemblers. The Microchip development system
MPLab produces hex files in the correct format. You can download the software free from the
Microchip website (www.microchip.com).

PICs can also be programmed in BASIC using the integrated editor and optimising compiler in
PICLAB.

Additionally PICs can be programmed with flowcharts constructed using Crocodile Technology 1.5 and
above from Crocodile Clips (www.crocodile-clips.com). Support for PICLAB Programmer is built in to
Crocodile Technology and it can be controlled from within this application.

As a tester board, BASIC programs and Crocodile Technology flowcharts can be downloaded into a
PIC and run in situ. PICLAB features a number of on-board peripherals which can be controlled from
BASIC or the flowchart, with good correspondence between the operation of the virtual microcontroller
on the Crocodile Technology screen and the physical microcontroller on the bench.

PICLAB Programmer is designed to work with Microchip’s 18-pin flash PIC family. These devices can
be re-programmed without the need for a UV eraser and so are ideal in an educational environment.

PICLAB Programmer currently supports the following devices: PIC16F83, PIC16F84, PIC16F84A,
PIC16F627, PIC16F628. Support for new flash PICs will be added in the future (see Software
Updates).

3

http://www.crocodile-clips.com/

System Requirements

IBM PC or compatible
486 processor or better
Windows 95 or later
10MB free disk space
free serial port

4

Packing List

PICLAB Programmer
mains power adaptor
RS232 serial cable
installation disk

5

Installing PICLAB

The software is provided as a self-extracting compressed file. Simply run the executable and select
the directory you wish to install the files into.

If you are using PICLAB in conjunction with Crocodile Technology 1.5 and above from Crocodile Clips,
you can also select the directory to install support for Crocodile Technology. This would normally be
the sub-directory "PlugIns\MadLab" in your Crocodile Technology directory.

6

Hardware Setup

PICLAB Programmer

Connect the RS232 cable (9-way male to 9-way female) to PICLAB Programmer and to your PC.

Connect the power supply to the power connector. The supply should be capable of delivering 9V to
12V regulated dc at a maximum current of 300mA, fitted with a 2.1mm power plug with centre positive.
The POWER LED (red) on PICLAB Programmer should come on when the power is connected, and
the ACTIVE LED should flash green twice.

Insert a PIC (16F83, 16F84, 16F84A, 16F627 or 16F628) into the ZIF socket on PICLAB with the
notch in the PIC nearest the ZIF handle. Push the handle down to lock the PIC in place.

The RUN/STOP button starts and stops execution of the program in the PIC in the ZIF socket. The
ACTIVE LED is green when the program is running, and is yellow when the PIC is being programmed.
A PIC should never be inserted or removed from the ZIF socket when the ACTIVE LED is on.

PICBOT

Connect the RS232 cable (9-way male to 9-way female) to PICBOT and to your PC.

Insert 4 AA batteries into the battery box and slide the power switch to the on position. PICBOT should
beep twice and its LEDs should flash if it is functioning properly.

The green GO button starts the program in PICBOT running, and the red STOP button halts it (but see
Compiler Options). It can also be controlled from the PC.

Note that the RS232 connector shouldn't be removed from PICBOT when it is powered up, and
PICBOT should never be powered down while downloading and writing to the PIC memory (when both
LEDs are lit).

7

Quick Start

After installing the software and setting up the hardware, open one of the example BASIC programs in
the subdirectory "programmer\examples" or "robot\examples" located in the installation directory.
Make sure Tester Board is selected in the Options menu if you are using PICLAB Programmer, then
select Compile in the Program menu (or click the gearwheels icon). After compilation select Download
Memory in the Program menu (or click the down arrow icon) and click Begin. After the program has
successfully downloaded press the RUN/STOP button on PICLAB Programmer, or the green GO
button on PICBOT.

8

Commands

File Menu

New

Opens and clears a new BASIC window for program editing. If the current window has been
modified and not saved then you are prompted to save the file.

Open

Opens a BASIC, assembler or hex file from disk. Hex files must be in Intel INHX8M format.

Close

Closes the current window. If its contents have been modified and not saved then you are
prompted to save the file.

Save

Saves the contents of the current window to disk. BASIC, Assembler and Memory windows can be
saved. BASIC and assembler are saved as text files, memory is saved in Intel INHX8M format.

Save As

Saves the contents of the current window with a new filename.

Print Setup

Allows a printer to be selected.

Print

Prints the contents of the current window.

Exit

Exits the application.

9

Edit Menu

Undo

Undoes the last editor operation. One level of undo is available.

Cut

Cuts selected text to the clipboard. Only applicable to the BASIC window.

Copy

Copies selected text to the clipboard.

Paste

Pastes text from the clipboard. Only applicable to the BASIC window.

Delete

Deletes selected text. Only applicable to the BASIC window.

Select All

Selects all the text in the current window.

Find

Finds a text string in the current window.

Find Next

Finds the next occurrence of the text string in the current window.

Replace

Replaces a text string in the current window with another text string.

Set Font

Allows the font face, style and size to be changed. The font is used in any new windows
subsequently opened, but doesn't change the font in existing windows.

Tabs

Sets the tab stop position.

10

Options Menu

Set up Programmer

Allows the PC serial port (COM1 to COM4) to be selected.

PIC Options

PICLAB Programmer only. Allows selection of various PIC options.
Device: selects the PIC in use (16F83, 16F84, 16F84A, 16F627 or 16F628).
Clock: the target-board clock frequency when programming PICs for boards other than PICLAB.
Take care that you don't select a faster clock than the PIC you are using can work at (the
maximum speed of the 'F84 is 10MHz, and the 'F84A is 20MHz).
ID: a 4 hexadecimal-digit code used for identification purposes. Typically contains a software
version number.

The remaining checkboxes control the configuration options of the PIC. Refer to the Microchip
(www.microchip.com) documentation for full details. When running programs on PICLAB
Programmer these options are pre-configured, as is the clock frequency.

Compiler Options

PICLAB Programmer only. The Tester board option is the same as that found in the main Options
Menu. Check this box if you are running programs on PICLAB Programmer.

PICLAB Programmer only. The compiler can generate code for a PIC which emulates a BASIC
Stamp (PORTB used as a bi-directional 8-bit port). Note that this is not an actual BASIC Stamp but
rather a PIC with similar I/O.

The compiler will generate 8-bit or 16-bit variable object code. You wouldn't normally need to use
16-bit, the exception being if counters or other variables in your program or flowchart could exceed
255. Programs and flowcharts compiled using 16-bit variables are roughly twice the size of 8-bit
compilations, allow a smaller number of program variables in memory, and run more slowly.

Signed variables can also be enabled. Signed variables are allowed to be negative, as opposed to
unsigned variables which are always positive. There is a program memory overhead associated
with their use. See DIM for more information.

PICLAB will optionally generate assembler language that corresponds to a compiled BASIC
program or Crocodile Technology flowchart. This is useful for learning more about PIC assembly
language and also gives the location of any compilation errors. Select this checkbox to enable
assembler output.

Very large BASIC programs can cause the assembler buffer to overflow. If this happens then
disable assembler output to allow a compilation to succeed.

PICLAB Programmer only. Weak pull-ups can be enabled or disabled when compiling for PICs for
other boards - refer to the Microchip documentation for details.

11

http://www.microchip.com/

PICBOT only. The STOP button can be made available for use by your program. Normally the
STOP button halts execution of a program but this can be overridden by selecting the "STOP
button" option. If checked then PICBOT cannot be halted by pressing the STOP button, but can still
be halted from the PC (unless "RS232 comms" is enabled).

PICBOT only. Bytes received on the serial port can be made available for use by your program.
Normally received bytes control the downloading and running of programs etc, but this can be
overridden by selecting the "RS232 comms" option. If checked then PICBOT will not respond to
stop commands from the PC, and can only be halted by pressing the STOP button (if not disabled)
or turning the power switch off. See RXBYTE for more information.

I/O Options

PICLAB Programmer only. The peripherals connected to the PICLAB 18-pin PIC can be selectively
enabled and disabled. The I/O Options dialog indicates which peripherals are enabled, and how the
inputs and outputs of the PIC are logically connected. Note that the buzzer and speaker are
mutually exclusive, and that the low and high 7-segments are connected to outputs 0 to 3 and
outputs 4 to 7 respectively.

If you access the peripherals in your BASIC programs through the use of system variables then
there is never any need to disable pins because there is no sharing.

Monitor Sensors

PICBOT only. Continuously monitors the digital and analogue sensors on board and displays their
values. Also displays the status of the expansion connector inputs. This is a useful tool for testing
expansion boards.

Tester Board

PICLAB Programmer only. If ticked then downloaded programs can be run on PICLAB Programmer
(as opposed to using it to program PICs for other boards). Deselect this option if you are
developing programs for other boards.

Auto-run

If ticked then downloaded programs are run automatically (equivalent to pressing the RUN/STOP or
GO button after downloading).

CT Expert Mode

When selected enables Crocodile Technology expert mode. This allows access to the PICLAB
toolbar when downloading flowcharts. Clicking on the download button in a Crocodile Technology
flowchart brings up PICLAB's main window. The PIC Options, Compiler Options and I/O Options
can be changed prior to downloading the flowchart by clicking the compile button followed by the
download button.

12

Program Menu

Reset Programmer

Resets PICLAB Programmer or PICBOT and displays the firmware version number. Used to check
that communications with the PC are working.

Device Usage

PICBOT only. Displays usage statistics for the PIC, specifically the number of times the FLASH
program memory has been completely written.

Compile

Compiles the current BASIC program into object code, ready for downloading, and optionally
generates assembler code (if the Assembler option is checked in Compiler Options). An Errors
window displays the results of the compilation and any errors found.

A BASIC program must be successfully compiled without errors before it can be downloaded.

Download Memory

Downloads memory to a PIC. The different memory areas of a PIC can be individually downloaded
by checking or unchecking the boxes in the Download dialog (PICLAB Programmer only).

A PIC contains four memory areas:

Program memory - the program itself
Data memory - non-volatile memory (EEPROM) for permanent variable storage
Configuration - the configuration bits such as the oscillator type, code-protection flag etc.
ID - an identification code

To cancel the operation before starting click on the close box in the top right hand corner of the
dialog.

Upload Memory

Uploads memory from a PIC. The different memory areas of a PIC can be individually uploaded by
checking or unchecking the boxes in the Upload dialog (PICLAB Programmer only).

If a PIC has been code-protected then memory will read as all zeroes.

To cancel the operation before starting click on the close box in the top right hand corner of the
dialog.

13

Verify Memory

Verifies memory from a PIC (i.e. compares the PIC memory with the Memory window). The
different memory areas of a PIC can be individually verified by checking or unchecking the boxes in
the Verify dialog (PICLAB Programmer only). Note that memory is automatically verified when
downloaded, but this option provides an additional check. A PIC that has been code-protected
however will fail to verify.

To cancel the operation before starting click on the close box in the top right hand corner of the
dialog.

Erase Device

PICLAB Programmer only. Erases all the memory in a PIC.

Run Program

Runs the program downloaded to the PIC. Equivalent to pressing the RUN/STOP button on
PICLAB Programmer, or the green GO button on PICBOT. The ACTIVE LED on PICLAB
Programmer is green when a program is running.

PICLAB Programmer - this option is not available if Tester Board has not been selected in the
Options Menu.

Stop Program

Stops the program in the PIC. Equivalent to pressing the RUN/STOP button on PICLAB
Programmer, or the red STOP button on PICBOT.

PICLAB Programmer - this option is not available if Tester Board has not been selected in the
Options Menu.

14

Window Menu

BASIC

Opens the BASIC window for program editing.

Assembler

Opens the Assembler window to display compiled assembler code.

Memory

Opens the Memory window to display the object code of a compiled program, a loaded hex file, or
uploaded memory.

Monitor

PICBOT only. Opens the Monitor window which is used for bi-directional serial port
communications with PICBOT. See "RS232 comms" option in Compiler Options, and PRINT.

Cascade

Cascades all open windows.

Tile Vertically

Tiles all open windows vertically.

Tile Horizontally

Tiles all open windows horizontally.

Arrange Icons

Arranges any iconic windows along the bottom of the screen.

Close All

Closes all open windows.

15

Help Menu

Contents

Displays the online help pages.

Using help

How to use help.

About

Displays the copyright message and the software version number.

16

Toolbar

Button Action Menu equivalent

 Opens BASIC, assembler or hex file File|Open
 Saves current window File|Save
 Cuts text to clipboard Edit|Cut
 Copies text to clipboard Edit|Copy
 Pastes text from clipboard Edit|Paste
 Sets up programmer Options|Set up programmer
 Sets PIC options Options|PIC Options
 Sets compiler options Options|Compiler Options
 Sets I/O options Options|I/O Options
 Resets programmer Program|Reset Programmer
 Compiles BASIC Program|Compile
 Downloads memory to PIC Program|Download Memory
 Uploads memory from PIC Program|Upload Memory
 Runs PIC program Program|Run Program
 Stops PIC program Program|Stop Program
 About the application Help|About
 Help table of contents Help|Contents

17

BASIC Programs

A BASIC program consists of a number of lines (statements) containing labels, instructions, constants,
and variables.

Labels identify sections of a program. They are up to 32 characters long, and can contain letters,
numbers and the underscore character _, but the first character must be a letter. The definition of a
label requires a colon immediately following the label, but the colon is not needed when the label is
used in a GOTO or GOSUB instruction. Labels are not case-sensitive. See GOTO for an example of
the use of a label.

Instructions can be in upper or lower case. Instructions do not have to be indented in a line but it is
good practice to do so. The keywords for instructions cannot be used as labels or variable names.

Constants can be decimal (base 10), hexadecimal (base 16), binary (base 2) or character.
Hexadecimal constants are preceded with a $ symbol, binary constants with a % symbol, and
characters are enclosed in double quotes. Embedded double quotes in characters and strings are
preceded by a backslash character. See LET for examples of constants.

Variables can be single-bit, 8-bit, 16-bit, signed or unsigned. The names of variables follow the same
rules as labels and are not case-sensitive. See DIM.

All arithmetic is integer arithmetic. Overflows are not detected.

The hardware peripherals are accessed through pre-defined variables (system variables) or by using
pin numbers. Many peripherals have multiple names or aliases.

The installed "examples" directory contains sample BASIC programs.

Differences to BASIC Stamp PBASIC

Negative numbers are allowed. Complex expressions are allowed with operator precedence.

Extra instructions and synonyms have been introduced, some PBASIC instructions are not supported,
and there are changes to the syntax:

BEEP, EVERY are new instructions
DIM is not required in PBASIC
EEPROM and SOUND have different syntax
HIGH and LOW function differently if a variable is used
IF statements allow instructions as well as labels and include an ELSE part
ON is similar to BRANCH
PRINT is similar to DEBUG
RXBYTE and TXBYTE are equivalent to SERIN and SEROUT

18

BASIC Instructions

'
BEEP
CLEAR <pin>|<variable>
CLS
DATA <address>,<constant>|<string>,<constant>|<string>,...
DIM <variable>{:1|1u|8|8u|8s|16|16u|16s|u|s},<variable>,...
EEPROM <address>,<constant>|<string>,<constant>|<string>,...
END
EVERY <period> GOSUB <label>
FOR <variable> = <start> TO <end> {STEP <step>}
GOSUB <label>
GOTO <label>
HIGH <pin>|<variable>
IF <expression> THEN <label>|{THEN} <instruction> {ELSE <label>|<instruction>}
{LET} <variable> = <expression>
LOW <pin>|<variable>
NEXT {<variable>}
ON <expression> GOTO|GOSUB <label>,<label>,...
PAUSE <duration>
PRINT <expression>|<string>,<expression>|<string>,...
RANDOM <variable>
READ <address>,<variable>,<variable>,...
REM
RESET <pin>|<variable>
RETURN
RXBYTE <variable>,<variable>,...
RXCHAR <variable>,<variable>,...
SET <pin>|<variable>
SOUND <note>,<duration>
SYMBOL <symbol> = <constant>|<variable>
TOGGLE <pin>|<variable>
TXBYTE <expression>|<string>,<expression>|<string>,...
TXCHAR <expression>|<string>,<expression>|<string>,...
WRITE <address>,<expression>|<string>,<expression>|<string>,...

| indicates alternatives, {} indicates optional

<symbol>, <variable>, <label> = string of letters, numbers and underscores with a letter as the first
character
<expression>, <start>, <end> = expression involving constants, symbols, variables and operators
<constant>, <step> = simple constant or expression that evaluates to a constant
<string> = string of characters delimited by double quotes
<pin> = 0 to 7, or symbolic name
<address> = 0 to 63 for PICLAB Programmer (0 to 127 for '62X), or 0 to 95 for PICBOT
<period> = 0 to 255 hundredths of a second
<duration> = 0 to 65535 milliseconds
<note> = 0 to 59 (5 octaves A to G) for PICLAB Programmer, or 0 to 71 (6 octaves A to G) for PICBOT

19

'

Indicates a comment (remark). Comments are aids to the understanding of a program and are ignored
by the compiler. ' can be used by itself on a line, or after other instructions.
See also REM.

' this is a comment

 IF x > 10 GOTO error ' test x against upper limit

20

BEEP

PICLAB Programmer - Tester Board option must be enabled. Sounds a short beep. Note is reset to its
default value by this instruction (only applicable to PICBOT).
See also SOUND.

 BEEP ' double beep
 PAUSE 250
 BEEP

21

CLEAR <pin>|<variable>

See LOW.

22

CLS

PICBOT only. Clears the monitor window if open.

 CLS ' clear window
 PRINT "The result is ",result

23

DATA <address>,<constant>|<string>,<constant>|<string>,...

Initialises EEPROM data memory with 8-bit data. EEPROM memory can be used to set up data
tables, or as additional memory for message strings etc. DATA statements can appear anywhere in a
program.
<address> is a constant or constant expression that evaluates to an address in the range 0 to 63 for
PICLAB Programmer (0 to 127 for '62X), or 0 to 95 for PICBOT. An address outside this range causes
an error. The data to be stored can be a constant expression or a string. Data is stored in consecutive
memory locations, and strings are stored one byte per character without a terminator.
EEPROM is a synonym for this instruction. See also READ, WRITE (this instruction differs from
WRITE in that the data is written when the program is downloaded, not when it is executed).

 DATA 10,40,45,50,55,60 ' data table with 5 entries
 READ 10+n,x ' reading the n'th entry

 DATA 20,"an error message"

 DATA 30,1234>>8,1234&$ff ' storing a 16-bit constant

24

DIM <variable>{:1|1u|8|8u|8s|16|16u|16s|u|s},<variable>,...

Defines a variable and optionally specifies its size and signed properties. Variables do not have to be
defined to be used but it is good practice to do so. Variables can then be made no larger than they
need to be. For example, a flag variable which only holds the values 0 and 1 can be efficiently stored
in a single bit rather than in a complete byte. Memory for variables is in short supply so it is advisable
not to waste it. 16-bit variables should be used sparingly because the compiler needs to generate
extra code to handle them which means that program memory fills more quickly. Additionally 16-bit
code runs more slowly. Signed variables also introduce an overhead compared to unsigned variables.
DIM if used must precede any reference to the variable. It is usual to group all the DIM statements at
the beginning of a program. If a variable is used without (or before) being defined then its properties
default to those specified in the Compiler Options (but see HIGH, LOW, TOGGLE).
The optional modifiers specify the size and signed properties of the variable:
:1 single-bit variable, 0 or 1
:8u 8-bit unsigned variable, in the range 0 to 255
:8s 8-bit signed variable, in the range –128 to 127
:16u 16-bit unsigned variable, in the range 0 to 65535
:16s 16-bit signed variable, in the range –32768 to 32767
Single-bit variables are always unsigned. BASIC Stamp variables are 8-bit unsigned. Note that DIM
does not zero variables.

 DIM x:16u ' 0 to 65535
 DIM y:8s ' –128 to 127
 DIM flag:1 ' single-bit variable (0 or 1)
 DIM x ' properties defined by Compiler Options
 DIM x:s ' signed variable, size defined by
 ' Compiler Options

25

EEPROM <address>,<constant>|<string>,<constant>|<string>,...

See DATA.

26

END

Terminates a BASIC program. Turns all peripherals off and stops execution. This instruction is
optional in a program. If execution reaches the last statement it will stop anyway.

 IF Button1 THEN END ' terminate program if button pressed

27

EVERY <period> GOSUB <label>

PICBOT only. Background processing. The subroutine at <label> is called repeatedly every
<period>/100 seconds.
Background processing is asynchronous with the main program. That means that the background
subroutine can be called at any time, even in the middle of an instruction or calculation in the main
program. It is not guaranteed to be called between statements. This is a potential problem if the
background subroutine uses variables altered by the main program. Use a semaphore to guarantee
exclusive access in this case. Note that the background subroutine shouldn't call any subroutines
itself.
<period> is specified in hundredths of a second, in the range 1 to 255. EVERY 0 GOSUB disables
background processing, and EVERY <period> GOSUB leaves the subroutine unchanged but changes
the period.
See also GOSUB.

 DIM semaphore:1
 EVERY 10 GOSUB flash
 SET semaphore
 ' critical code
 CLEAR semaphore

flash: IF semaphore RETURN ' this subroutine is called
 TOGGLE Led1 ' 10 times every second
 RETURN

 EVERY 0 GOSUB ' background processing off

28

FOR <variable> = <start> TO <end> {STEP <step>}

Repeats a sequence of instructions. Instructions between the FOR statement and the matching NEXT
statement are executed one or more times.
<variable> is initialised to the value <start>, instructions in the loop are executed, <step> is added to
<variable>, which is then compared to <end>. The loop is repeated until <variable> is greater than
<end> if <step> is positive, or until <variable> is less than <end> if <step> is negative. The step is
optional and defaults to 1 but can be any positive or negative constant or constant expression. <start>
and <end> can be arbitrary expressions. <start> is evaluated once at the beginning of the loop, and
<end> is evaluated each time through the loop. Note that the loop always executes at least once
irrespective of the values of <start> and <end>.
See also NEXT.

 FOR n = 1 TO 0 ' this loop executes once

 NEXT

 FOR n = 10 TO 1 STEP -1 ' this loop executes 10 times

 NEXT

 FOR n = 1 TO 10 ' this loop executes 5 times

 n = n + 1
 NEXT n

 FOR x = 1 TO 10 ' 10 times through outer loop
 FOR y = 1 TO 10 STEP 2 ' 10 * 5 times through inner loop

 NEXT y
 NEXT x

 LET <variable> = <start> ' FOR loop equivalent
loop:
 LET <variable> = <variable> + <step>
 IF <variable> <= <end> THEN loop

29

GOSUB <label>

Executes a subroutine then continues with the next instruction. Subroutines can be nested (a
subroutine calling another subroutine), but they should not be nested more than 4 levels. If you
exceed this limit your program will behave unpredictably.
See also RETURN.

 GOSUB flash ' simple subroutine call

flash: HIGH Led1
 PAUSE 100
 LOW Led1
 RETURN

 GOSUB sub1 ' nested subroutines

sub1: GOSUB sub2 ' max depth = 4

 RETURN
sub2:
 RETURN

30

GOTO <label>

Unconditional branch. Execution continues with the instruction at <label>.

 GOTO error

error: PRINT "*** Timeout! ****"
 END

31

HIGH <pin>|<variable>

Makes a pin high, or sets a variable to 1.
<pin> can either be a symbolic name, or a number from 0 to 7. Alternatively a variable can be
specified in which case this instruction is equivalent to LET <variable> = 1. Note that this functions
differently to BASIC Stamp PBASIC. If a variable is used in this way before it is defined (see DIM) then
it is created as a single-bit variable.
SET is a synonym for this instruction. See also LOW, TOGGLE.

 HIGH Led1 ' turn Led 1 on

 HIGH 3 ' make pin 3 high

 LOW RightMotorBackward ' right wheel
 HIGH RightMotorForward

 HIGH x ' x = 1

 LET n = 5
 HIGH n ' this is not the same as HIGH 5

32

IF <expression> THEN <label>|{THEN} <instruction> {ELSE <label>|<instruction>}

Conditional branching or execution. <expression> is evaluated and depending on whether it is true or
false (non-zero or zero) the program branches to <label> or executes <instruction>. The ELSE part
optionally specifies an alternative branch or instruction to be executed if the THEN part is false.
Take care with operator precedence in expressions. For example, IF mask & 3 = 0 THEN ... The =
operator has a higher precedence than the & operator. To make the instruction execute as expected
bracket it thus IF (mask & 3) = 0 THEN ...

 IF n > 10 LET n = 0 ' wrap around if > 10

 IF n > 100 PRINT "too big!"

 IF n THEN label ' branches if n <> 0

 IF a & b THEN label ' might not work (1 & 2 = 0 e.g.)
 IF a <> 0 & b <> 0 THEN label ' correct form

 IF x > 123 THEN exit ' these two statements are
 IF x > 123 THEN GOTO exit ' identical

 IF flag THEN LET x = x + 1 ' LET is required
 IF flag LET x = x + 1 ' shorter format
 IF flag x = x + 1 ' causes a syntax error

 IF x < 0 THEN error ELSE ok

 IF x >= 0 PRINT "positive" ELSE PRINT "negative"

 IF mask & 3 = 0 THEN ... ' actually IF mask & (3 = 0)
 ' or IF mask & 0

33

{LET} <variable> = <expression>

Sets a variable to a value. The keyword is optional. <expression> can be an arbitrary expression
involving constants, operators and brackets. If a variable is used before being defined (see DIM) then
its size and signed properties default to those specified in the Compiler Options.

 LET x = 0 ' clear variable

 x = x + 1 ' increment variable

 LET n1 = $ab ' hexadecimal constant
 LET n2 = %10101010 ' binary constant
 LET n3 = "*" ' character constant
 LET n4 = "\"" ' embedded double quote
 LET n5 = "\\" ' embedded backslash

 LET z = 10*x + y/2 ' complex expression

34

LOW <pin>|<variable>

Makes a pin low, or zeroes a variable.
<pin> can either be a symbolic name, or a number from 0 to 7. Alternatively a variable can be
specified in which case this instruction is equivalent to LET <variable> = 0. Note that this functions
differently to BASIC Stamp PBASIC. If a variable is used in this way before it is defined (see DIM) then
it is created as a single-bit variable.
RESET and CLEAR are synonyms for this instruction. See also HIGH, TOGGLE.

 LOW Led2 ' turn Led 2 off

 LOW 4 ' make pin 4 low

 LOW x ' x = 0

 SYMBOL n = 5
 LOW n ' this is not the same as LOW 5

35

NEXT {<variable>}

Marks the end of a FOR loop. The variable can be omitted only for non-nested loops, in which case
NEXT matches the last FOR statement.
See also FOR.

 FOR n = 1 TO 10 ' 10 times through the loop
 PRINT n
 NEXT n ' n could be omitted

 FOR x = 1 TO 10
 FOR y = 1 TO 10

 IF error NEXT x ' exit inner loop prematurely

 NEXT y
 NEXT x

36

ON <expression> GOTO|GOSUB <label>,<label>,...

Branches to one of a number of addresses, or calls one of a number of subroutines. If the expression
evaluates to greater than the number of labels, then execution continues at the next instruction. The
number of labels is limited to 32, and the index starts at 0.
See also GOTO, GOSUB.

 ON button GOSUB state1,state2,state3

state1: HIGH Led1 ' if button = 0
 RETURN
state2: HIGH Led2 ' if button = 1
 RETURN
state3: HIGH Led3 ' if button = 2
 RETURN

37

PAUSE <duration>

Pauses for a number of milliseconds (thousandths of a second). The duration can be a constant or an
expression. For PICBOT the accuracy of the pause is 10ms - PAUSE 1 and PAUSE 10 both wait for
the same amount of time (1/100 second). The maximum pause is 65535 ms (a little over a minute).

 PAUSE 500 ' wait half a second

38

PRINT <expression>|<string>,<expression>|<string>,...

PICBOT only. Sends output to the RS232 serial port. This is a useful aid to debugging as it allows
variables to be examined etc. PRINT works in conjunction with the monitor window.
The following print modifiers are available: %x to print binary, $x to print hex, and @x or #x to print a
character.
PRINT outputs a newline after printing its arguments. You can use PRINT "\n" to force additional
newlines. Note that numbers greater than 32767 will print as negative numbers, and numbers less
than -32768 will print as positive numbers.

 PRINT x," squared is ",x*x

 PRINT %255 ' prints "%11111111"
 PRINT %11 ' prints "%00001011" (decimal 11
 ' in binary)
 PRINT %(%11) ' prints "%00000011"
 PRINT $255 ' prints "$FF"
 PRINT #65 ' prints "A"

 PRINT "column1\tcolumn2" ' prints in two columns (\t = tab)
 PRINT "line1\nline2" ' prints on two lines (\n = newline)

39

RANDOM {<variable>}

PICBOT only. Gets the next number in a pseudo random sequence. The random number is also
stored in the 16-bit variable Rand.

 DIM n:16u
 RANDOM n
 PRINT "The next random number is ",n
 PRINT "The last random number was ",Rand

40

READ <address>,<variable>,<variable>,...

Reads 8-bit data from EEPROM data memory. EEPROM memory is non-volatile which means that its
contents are retained after power is removed. It can be used to store data that is needed permanently,
or as additional memory for message strings etc.
<address> is an expression that evaluates to an address in the range 0 to 63 for PICLAB Programmer
(0 to 127 for '62X), or 0 to 95 for PICBOT. An address outside this range reads as zero. Data is read
from consecutive memory locations into the specified variable(s).
See also WRITE, DATA.

 DIM x:16,hi:8,lo:8 ' read a 16-bit variable as two bytes
 READ 10,hi,lo
 LET x = (hi<<8) | lo ' brackets necessary because of precedence

41

REM

Indicates a comment (remark). Comments are aids to the understanding of a program and are ignored
by the compiler. REM and ' can be used on lines by themselves, and ' can be used after other
instructions.

REM this is a comment

 IF x > 10 GOTO error ' test x against upper limit

 LET x = 1 REM this will cause a syntax error

42

RESET <pin>|<variable>

See LOW.

43

RETURN

Returns from a subroutine. Execution continues with the instruction after the last GOSUB.
See also GOSUB.

 GOSUB flash

flash: TOGGLE Led1
 RETURN

44

RXBYTE <variable>,<variable>,...

PICBOT only. If RS232 comms are enabled (see Compiler Options) this instruction receives 8-bit data
from the RS232 serial port (9600 baud, 1 stop bit, no parity). RXBYTE does not timeout but waits
indefinitely until a character has been received. Use RxIn and RxError single-bit variables to check the
serial port status. The received data is stored in the specified variable(s).
RXCHAR is a synonym for this instruction. See also TXBYTE.

loop: IF !RxIn GOTO loop
 RXBYTE x
 If RxError GOTO error ' x contains error code if error

 DIM result:16,hi:8,lo:8 ' receiving word data –
 RXBYTE hi,lo ' assemble from two bytes
 LET result = (hi<<8) | lo ' brackets needed because of precedence

45

RXCHAR <variable>,<variable>,...

PICBOT only. See RXBYTE.

46

SET <pin>|<variable>

See HIGH.

47

SOUND <note>,<duration>

PICLAB Programmer - Tester Board option must be enabled. Sounds a musical tone.
<note> is in the range 0 to 59 (PICLAB Programmer) or 0 to 71 (PICBOT), which corresponds to 5 or
6 octaves A to G. <duration> is in milliseconds but for PICBOT is only accurate to the nearest 10ms.
Note that the PICLAB Programmer peripherals are disabled while a sound is playing, and the duration
is limited to 4095 ms.
See also BEEP, PAUSE.

 SOUND 39,500 ' C
 SOUND 41,500 ' D
 SOUND 43,500 ' E
 SOUND 44,500 ' F
 SOUND 46,500 ' G
 SOUND 48,500 ' A
 SOUND 50,500 ' B
 SOUND 51,500 ' C

 LET Note = <note> ' equivalent of SOUND <note>,<duration>
 HIGH Speaker
 PAUSE <duration>
 LOW Speaker

48

SYMBOL <symbol> = <constant>|<variable>

Defines a constant or an alias for a variable or pin. SYMBOL definitions should be placed prior to any
references to them.

 SYMBOL LIMIT = 100 ' upper limit
 IF x > LIMIT GOTO error

 LET x = N ' backward reference will cause
 SYMBOL N = 10 ' an error

 SYMBOL SIZE = 10*20 ' constant expression

 SYMBOL switch = pin2 ' define an alias
 IF switch THEN label

 SYMBOL alert = Led1 ' define an alias
 HIGH alert

49

TOGGLE <pin>|<variable>

Makes a pin high if it is currently low or low if it is currently high, or toggles a variable between 0 and 1.
<pin> can either be a symbolic name, or a number from 0 to 7. Alternatively a variable can be
specified in which case this instruction is equivalent to LET <variable> = <variable> ^ 1 when
<variable> is a single bit. If a variable is used in this way before it is defined (see DIM) then it is
created as a single-bit variable.
See also HIGH, LOW.

 TOGGLE Led3 ' turn Led3 off if on and vice versa

 TOGGLE 5 ' toggle pin 5

 TOGGLE x ' x = 0 if non-zero or x = 1 if zero

 DIM flag:1 ' equivalent to flag = flag ^ 1 but
 TOGGLE flag ' more efficient

50

TXBYTE <expression>|<string>,<expression>|<string>,...

PICBOT only. Transmits 8-bit data to the RS232 serial port (9600 baud, 1 stop bit, no parity). The data
to be transmitted can be an expression or a string.
TXCHAR is a synonym for this instruction. See also RXBYTE.

 TXBYTE "hello world\n" ' transmits the string followed
 ' by a newline

 DIM x:16
 TXBYTE x ' only transmits low byte
 TXBYTE x>>8,x&$ff ' transmitting a word (16 bits)

51

TXCHAR <expression>|<string>,<expression>|<string>,...

PICBOT only. See TXBYTE.

52

WRITE <address>,<expression>|<string>,<expression>|<string>,...

Writes 8-bit data to EEPROM data memory. EEPROM memory is non-volatile which means that its
contents are retained after power is removed. It can be used to store data that is needed permanently,
or as additional memory for message strings etc.
<address> is an expression that evaluates to an address in the range 0 to 63 for PICLAB Programmer
(0 to 127 for '62X), or 0 to 95 for PICBOT. An address outside this range is ignored. The data to be
written can be an expression or a string. Data is stored in consecutive memory locations, and strings
are stored without a terminator.
See also READ, DATA (this instruction differs from DATA in that the data is written each time the
instruction is executed).

 WRITE 0,high_score

 WRITE 1,"a character string" ' no string terminator
 WRITE 1,"another string",0 ' zero terminator

 DIM x:16
 WRITE 10,x ' only stores low byte
 WRITE 10,x>>8,x&$ff ' stores a complete 16-bit variable

53

Operators and Precedence

BASIC expressions consist of constants, variables and the following operators. Operators with higher
precedence are evaluated before those with lower precedence. Unary operators of equal precedence
are evaluated right to left, and binary operators of equal precedence are evaluated left to right.
Brackets can be used to override the precedence order.

 () brackets 10 highest precedence
 + unary plus 9 no operation
 - unary minus 9 negation (two's complement)
 ! logical NOT (unary) 9 !x = 1 if x = 0 otherwise !x = 0
 ~ bitwise complement (unary) 9 ~0 = 1, ~1 = 0 (one's complement)
 * multiply 8 signed or unsigned multiplication
 / divide 8 signed or unsigned integer division
 % modulus 8 signed or unsigned remainder
 + add 7 signed or unsigned addition
 - subtract 7 signed or unsigned subtraction
 >> shift right 6 >>n equivalent to dividing by 2 to the power of n
 << shift left 6 <<n equivalent to multiplying by 2 to the power of n
 >= greater than or equal 5 1 if true, 0 if false
 > greater than 5 1 if true, 0 if false
 <= less than or equal 5 1 if true, 0 if false
 < less than 5 1 if true, 0 if false
 = equal 4 1 if true, 0 if false
 <> not equal 4 1 if true, 0 if false
 & bitwise AND 3 0 & 0 = 0, 0 & 1 = 0, 1 & 0 = 0, 1 & 1 = 1
 ^ bitwise XOR 2 0 ^ 0 = 0, 0 ^ 1 = 1, 1 ^ 0 = 1, 1 ^ 1 = 0
 | bitwise OR 1 0 | 0 = 0, 0 | 1 = 1, 1 | 0 = 1, 1 | 1 = 1

Shift right and shift left are limited to shifts from 0 to 16 positions, and the shift must be a constant.
Shift right is an arithmetic shift for signed variables, or a logical shift for unsigned variables.

54

System Variables

The peripherals connected to PICLAB Programmer and PICBOT can be accessed using the following
predefined variables. The use of these variables in instructions is to be preferred to the use of literal
pin numbers.
Many of the peripherals have additional names or aliases. They can be accessed equally using the
aliases, but there is a degree of doubling-up with some of them. For example the PICLAB Programmer
variable "pin2" accesses both pushbutton 3 and the microphone. If the individual variables "Button3"
and "SoundSensor" are used instead then the two peripherals can be independently tested.

PICLAB Programmer - Tester Board
Variable Bits Initial value Range Aliases Notes
Button1 1 - 0 - 1 pin0
Button2 1 - 0 - 1 pin1
Button3 1 - 0 - 1 pin2
Button4 1 - 0 - 1 pin3
SoundSensor 1 - 0 - 1 pin2
LightSensor 1 - 0 - 1 pin3
Led1 1 0 0 - 1 YellowLed, YellowLed1 output 0
Led2 1 0 0 - 1 GreenLed, GreenLed1 output 1
Led3 1 0 0 - 1 OrangeLed, OrangeLed1 output 2
Led4 1 0 0 - 1 RedLed, RedLed1 output 3
Led5 1 0 0 - 1 YellowLed2 output 4
Led6 1 0 0 - 1 GreenLed2 output 5
Led7 1 0 0 - 1 OrangeLed2 output 6
Led8 1 0 0 - 1 RedLed2 output 7
Speaker 1 0 0 - 1 output 6
Buzzer 1 0 0 - 1 output 7
Digits 8 0 0 - 255 pins 7-segments

Note: pin2 is either Button3 or SoundSensor, and pin3 is either Button4 or LightSensor. See I/O
Options.

55

PICLAB Programmer - BASIC Stamp
Variable Bits Initial value Range Aliases Notes
pin0 1 - 0 - 1 PORTB,0 (input/output)
pin1 1 - 0 - 1 PORTB,1 (input/output)
pin2 1 - 0 - 1 PORTB,2 (input/output)
pin3 1 - 0 - 1 PORTB,3 (input/output)
pin4 1 - 0 - 1 PORTB,4 (input/output)
pin5 1 - 0 - 1 PORTB,5 (input/output)
pin6 1 - 0 - 1 PORTB,6 (input/output)
pin7 1 - 0 - 1 PORTB,7 (input/output)
pins 8 - 0 - 255 PORTB (input/output)
b0 8 0 0 - 255 w0 w0 >> 8
b1 8 0 0 - 255 w0 w0 & $ff
b2 8 0 0 - 255 w1 w1 >> 8
b3 8 0 0 - 255 w1 w1 & $ff
b4 8 0 0 - 255 w2 w2 >> 8
b5 8 0 0 - 255 w2 w2 & $ff
b6 8 0 0 - 255 w3 w3 >> 8
b7 8 0 0 - 255 w3 w3 & $ff
b8 8 0 0 - 255 w4 w4 >> 8
b9 8 0 0 - 255 w4 w4 & $ff
b10 8 0 0 - 255 w5 w5 >> 8
b11 8 0 0 - 255 w5 w5 & $ff
b12 8 0 0 - 255 w6 w6 >> 8
b13 8 0 0 - 255 w6 w6 & $ff
w0 16 0 0 - 65535 b0, b1 (b0 << 8) | b1
w1 16 0 0 - 65535 b2, b3 (b2 << 8) | b3
w2 16 0 0 - 65535 b4, b5 (b4 << 8) | b5
w3 16 0 0 - 65535 b6, b7 (b6 << 8) | b7
w4 16 0 0 - 65535 b8, b9 (b8 << 8) | b9
w5 16 0 0 - 65535 b10, b11 (b10 << 8) | b11
w6 16 0 0 - 65535 b12, b13 (b12 << 8) | b13

Notes: LET dirs = %... sets PORTB pins as inputs or outputs (0 = input, 1 = output).
When reading the entire 8-bits of PORTB use the form LET <variable> = pins

PICLAB Programmer - Generic PIC
Variable Bits Initial value Range Aliases Notes
pin0 1 - 0 - 1 PORTA,0 (input)
pin1 1 - 0 - 1 PORTA,1 (input)
pin2 1 - 0 - 1 PORTA,2 (input)
pin3 1 - 0 - 1 PORTA,3 (input)
pins 8 - 0 - 255 PORTB (output)

Note: PORTA is a 4-bit input port, and PORTB is an 8-bit output port.

56

PICBOT
Variable Bits Initial Range Aliases Notes
Button1 1 - 0 - 1 GoButton, pin0 green GO button
Button2 1 - 0 - 1 StopButton, pin1 red STOP button (if enabled)
Obstacle1 1 - 0 - 1 LeftObstacle, pin2 left obstacle sensor
Obstacle2 1 - 0 - 1 RightObstacle, pin3 right obstacle sensor
Input1 1 - 0 - 1 pin4 expansion digital input 1
Input2 1 - 0 - 1 pin5 expansion digital input 2
Input3 1 - 0 - 1 pin6 expansion digital input 3
Input4 1 - 0 - 1 pin7 expansion digital input 4
Motor1Forward 1 0 0 - 1 LeftMotorForward left motor forward
Motor1Backward 1 0 0 - 1 LeftMotorBackward left motor backward
Motor2Forward 1 0 0 - 1 RightMotorForward right motor forward
Motor2Backward 1 0 0 - 1 RightMotorBackward right motor backward
Led1 1 0 0 - 1 LeftLed left led
Led2 1 0 0 - 1 RightLed right led
Speaker 1 0 0 - 1 speaker
Output1 1 0 0 - 1 expansion digital output 1
pins 8 0 0 - 255 output port
LightSensor 8 - 0 - 255 Light analogue light level
SoundSensor 8 - 0 - 255 Sound analogue sound level
AnalogueSensor1 8 - 0 - 255 Analogue1 expansion analogue sensor 1
AnalogueSensor2 8 - 0 - 255 Analogue2 expansion analogue sensor 2
Speed1 8 128 0 - 255 LeftSpeed left motor speed
Speed2 8 128 0 - 255 RightSpeed right motor speed
Ticks 8 0 0 - 99 increments every 1/100s
Seconds 16 0 0 - 65535 increments every 1s
Note 8 47 0 - 71 current note
Rand 16 ? 0 - 65535 last random number
RxIn 1 - 0 - 1 RS232 byte received ?
RxError 1 - 0 - 1 RS232 error ?

Note: the stop button is only available if "STOP button" is checked in Compiler Options.

57

Peripherals

PICLAB Programmer includes the following peripherals:
* 8 LEDs (red, orange, green, yellow, red, orange, green, yellow)
* dual 7-segment display
* piezo speaker/buzzer
* 4 pushbuttons
* sound sensor (MIC)
* light sensor (IR)

The LEDs are connected to the 8 output pins of the 18-pin PIC in PICLAB Programmer, in parallel with
the 7-segment displays. The 7-segment displays represent the hexadecimal value of the output pins,
with the high hex digit showing the upper 4 pins and the low hex digit showing the lower 4 pins.

The piezo can function either as a speaker or as a buzzer. The buzzer is a gated fixed-frequency
device, whereas the speaker must have its pin toggled to generate a sound. Logically the speaker is
connected to out6, and the buzzer to out7.

Writing to the output pins of the PIC effects all the output peripherals. For example setting all 8 output
pins high lights all the LEDs, displays 'FF' on the 7-segments, and sounds a click or tone on the
speaker.

The pushbuttons are connected to the 4 input pins of the 18-pin PIC, in parallel with the sound sensor
on in2 and the light sensor on in3. Pressing Button3 is equivalent to triggering the sound sensor with
a sharp clap or whistle, and pressing Button4 is equivalent to shining a light on the light sensor.

The peripherals can also be accessed in a BASIC program via the system variables. Used in this way
there is no 'sharing' or multiplexing of pins and peripherals can be individually controlled. See HIGH
for some examples.

The peripherals can be individually enabled or disabled via the I/O Options dialog. This is only really
relevant to Crocodile Technology flowcharts. If peripherals are controlled via system variables there is
no need to disable them because there is no sharing of pins.

The file "piclab.cyt" in the "programmer" directory contains a Crocodile Technology template of the
peripherals connected to PICLAB Programmer.

If using PICLAB to program generic PICs destined for other boards, then note that Port A is a 4-bit
input port and Port B is an 8-bit output port.

58

Schematic of the PICLAB Programmer peripherals

PICBOT includes the following peripherals:
* 2 LEDs
* 2 infra-red obstacle sensors
* 2 motors
* 2 pushbuttons
* piezo speaker
* analogue sound sensor
* analogue light sensor
* expansion connector with 4 digital inputs, 1 digital output and 2 analogue inputs

The left and right obstacle sensors read high when they detect an object within range on the
corresponding side of PICBOT.

The motors are controlled by two pins each. A motor is driven forward by setting the first pin high and
the second low, or backward by setting the first pin low and the second high. Setting both pins low
stops the motor.

59

The STOP button is only available to programs if the "STOP button" option is enabled in Compiler
Options.

The analogue sound and light sensors return values in the range 0 to 255. The louder a sound or the
brighter the ambient light level, the higher the reading.

The speaker is a gated device, setting its pin high sounds a tone (the system variable Note determines
its frequency).

Seven of the pins are connected to the expansion connector for interfacing with add-on boards.

The peripherals can also be accessed in a BASIC program via the system variables. See HIGH for
some examples. This is the preferred manner of controlling peripherals. It is easier to remember the
names of peripherals than which pins they are connected to, and it makes a program self-
documenting.

The file "picbot.cyt" in the "robot" directory contains a Crocodile Technology template of the
peripherals connected to PICBOT.

Schematic of the PICBOT peripherals

60

Compiler Error Messages

If you encounter an error then examine the assembler code produced by the compiler (see Compiler
Options for how to generate assembler code). This will indicate the context of the error. Errors are also
listed in the Errors window along with their line numbers.

You shouldn't normally encounter error messages when downloading a Crocodile Technology
flowchart to PICLAB because the flowchart must be syntactically correct. Exceptions are when the
ROM memory of the PIC is exceeded (flowchart too big) or the RAM memory is used up (too many
program variables).

Here is a complete list of compiler error messages and their causes:

Label not found Branch or subroutine call to a label that doesn't exist.
Variable not found Not normally encountered.
Label defined twice Every label must be unique.
Variable defined twice A variable has been DIM'ed after its first use. Move
 DIM statements to the program top.
Too many labels Maximum of 32 labels in an ON statement.
Unmatched NEXT No corresponding FOR statement.
Too many FOR-NEXT loops Maximum of 64 loops in a program.
Invalid pin Must be a number between 0 and 7.
Invalid address Must be in the range 0 to 63 for PICLAB Programmer
 (0 to 127 for '62X), or 0 to 95 for PICBOT.
Invalid size Variable size must be 1, 8 or 16 bits.
Syntax error Typically misspelled BASIC keyword.
Invalid operation Instruction not available (PICBOT only for example).
Number too big Greater than 255 or less than -256 for example.
Shift too big Must be between 0 and 16.
Not a constant expression Expression must not contain any variables.
Divide by 0 Attempted to divide by zero.
Floating point not supported Attempted to use a number containing a decimal point.
Fatal error Not normally encountered.
Internal error Not normally encountered.
End of file Not normally encountered.
Symbol table overflow Maximum of 256 symbols, variables or labels.
Too many variables RAM memory is full. Make variables smaller or double
 up their use.
Program memory full Program memory is full. Make 16-bit variables into
 8-bit unsigned variables.
Out of memory Close some applications.
RS232 comms not enabled Enable the option in Compiler Options.

An additional error you should be aware of (and one that Crocodile Technology will not trap) is a stack
overflow. In practice you should limit nested subroutine calls to 4 levels.

61

Software Updates

Download the latest version of PICLAB from the MadLab website (www.madlab.org/piclab).

The software is provided as a self-extracting compressed file. Simply run the executable and select
the directory you wish to install the files into. See Installing PICLAB.

The file "piclab.hex" in the sub-directory "programmer\firmware" is the latest version of the PICLAB
Programmer firmware. You can upgrade your PICLAB Programmer by programming a blank device
and then swapping the newly-programmed chip with the existing chip. Make sure the Tester Board
option is not ticked in the Options Menu, then load the file "piclab.hex" and download it into a 4MHz
PIC16F84 device (XT oscillator, power-up timer on, watchdog timer on). Match the notch in the chip
with the notch in the socket when replacing the existing chip.

The firmware in PICBOT is updated automatically by PICLAB. Make sure you have the latest update
of PICLAB.

62

	Introduction
	PICLAB Programmer

	System Requirements
	Packing List
	Installing PICLAB
	Hardware Setup
	PICLAB Programmer
	PICBOT

	Quick Start
	Commands
	File Menu
	Edit Menu
	Options Menu
	Program Menu
	Window Menu
	Help Menu

	Toolbar
	BASIC Programs
	Differences to BASIC Stamp PBASIC

	BASIC Instructions
	Operators and Precedence
	System Variables
	PICLAB Programmer - Tester Board
	PICLAB Programmer - BASIC Stamp
	PICLAB Programmer - Generic PIC
	PICBOT

	Peripherals
	Software Updates

